Preparation, Structure, and Magnetic Properties of a Dodecanuclear Mixed-Valence Manganese Carboxylate

By T. Lis
Instytut Chemii Uniwersytetu Wrocławskiego, 50-383 Wroclaw, ul. Joliot-Curie 14, Poland

(Received 29 January 1980; accepted 17 March 1980)

Abstract

This new type of dodecanuclear crystalline complex was obtained by reaction of Mn^{2+} with MnO_{4}^{-}in acetic and propionic acids. The reddish-black acetate complex has the formula $\left[\mathrm{Mn}_{12}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{16}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{O}_{12}\right.$]. $2 \mathrm{CH}_{3}$ $\mathrm{COOH} .4 \mathrm{H}_{2} \mathrm{O}$, established by chemical and singlecrystal X-ray diffraction methods. This complex is tetragonal, space group $I \overline{4}$, with $a=17.319$ (9), $c=$ $12 \cdot 388$ (7) $\AA, V=3716 \AA^{3}, Z=2, M_{r}=2060 \cdot 3, D_{c}=$ $1.84, D_{m}=1.83 \mathrm{Mg} \mathrm{m}^{-3}$. The final R and R_{w} were 0.045 and 0.034 for 1172 non-zero reflexions. The crystals are built up of $\left[\mathrm{Mn}_{12}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{16}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{O}_{12}\right]$ molecules, waters of crystallization and disordered acetic acid molecules. In the dodecanuclear molecules, which have $\overline{4}\left(S_{4}\right)$ crystallographic symmetry, the Mn atoms are linked by triply bridging oxo O atoms and by carboxylate bridges from acetate anions. The occurrence of a strong Jahn-Teller effect in Mn^{3+} ions differentiates the Mn^{3+} and Mn^{4+} ions. The interesting magnetic properties (the magnetic moment increases from $30.9 \times 10^{-24} \mathrm{~J} \mathrm{~T}^{-1}$ at 3.3 K to a maximum of $56.5 \times 10^{-24} \mathrm{~J} \mathrm{~T}^{-1}$ in the range $17-31 \mathrm{~K}$ and then decreases to $33.4 \times 10^{-24} \mathrm{~J} \mathrm{~T}^{-1}$ at 280 K per Mn atom) may be interpreted in terms of the $\mathrm{Mn}-\mathrm{Mn}$ distances and superexchange via bridge O atoms.

Introduction

It is known that the reaction of Mn^{2+} with MnO_{4}^{-}ions can produce a variety of complex compounds with a given oxidation number of Mn , with variations of the molar ratio of both ions and modification of the ligating species. To date, many papers describing the crystal structures of trivalent Mn complexes have been published. Furthermore, three crystal structures containing Mn atoms in mixed-valence states, i.e. $\left[\mathrm{Mn}_{2}-\right.$ (2,2'-bipyridine) $\left.)_{4} \mathrm{O}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{3} .3 \mathrm{H}_{2} \mathrm{O}$ (Plaksin, Stoufer, Mathew \& Palenik, 1972), $\left(\mathrm{K}_{2}\left\{\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left[\mathrm{Mn}_{3^{-}}\right.\right.\right.$ $\left.\left.\left.(\mathrm{HCOO})_{9} \mathrm{O}\right]_{2}\right\}\right)_{n} \quad(\mathrm{Lis} \quad \& \quad$ Jeżowska-Trzebiatowska, 1977), $\left[\mathrm{Mn}_{3} \mathrm{O}\left(\mathrm{O}_{2} \mathrm{CMe}\right)_{6}(\mathrm{py})_{3}\right]$ (Baikie, Hursthouse, New \& Thornton, 1978), have been investigated. In continuation of our previous studies on the crystal

0567-7408/80/092042-05\$01.00
structures of Mn carboxylates (Lis, Matuszewski \& Jeżowska-Trzebiatowska, 1977; Lis \& JeżowskaTrzebiatowska, 1977; Lis, 1977) we have started an examination of the mixed-valence $\mathrm{Mn}^{3+} / \mathrm{Mn}^{4+}$ carboxylate complexes. The strong Jahn-Teller effect in the Mn^{3+} ions allowed the identification of the Mn^{3+} and Mn^{4+} ions. Propionic and acetic acids were used as the reaction media and as the ligating species. As a result, a new type of dodecanuclear complex was obtained, and the structure determined chemically and by X-ray diffraction. The present paper is a report of the synthesis, isolation and structural determination of $\left[\mathrm{Mn}_{12}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{16}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{O}_{12}\right] .2 \mathrm{CH}_{3} \mathrm{COOH} .4 \mathrm{H}_{2} \mathrm{O}$.

The possibility of the formation of Mn dodecanuclear acetate complexes had been suggested by Weinland \& Fischer (1921).

Experimental

Preparation

4 g of powdered $\mathrm{Mn}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ in 40 ml $60 \% \mathrm{CH}_{3} \mathrm{COOH}$ were heated until dissolution. 1 g of powdered KMnO_{4} was added to the cooled solution dropwise, and the reaction mixture slowly heated to 333 K . The red-brown mixture was allowed to stand at room temperature in air. After two days reddish-black crystals were filtered through a Büchner funnel and dried in a stream of air. Analysis: calculated for $\mathrm{C}_{36} \mathrm{H}_{72} \mathrm{Mn}_{12} \mathrm{O}_{56}$: C 21.0 ; H 3.5; O 43.5 ; Mn 32.0%; found: C 20.8 ; H 3.4; O 43.9; Mn 31.9\%. C and H were determined microanalytically and Mn gravimetrically as $\mathrm{Mn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$.

Oxidation-state determination

The oxidation-state determination was made by dissolving the compound in $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ with excess KI , and titrating the liberated iodine with 0.05 M $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The compound investigated has an oxidation state of 3.34 per Mn atom.
(c) 1980 International Union of Crystallography

Physical measurements

Magnetic susceptibilities were obtained over the range $3 \cdot 3-67 \mathrm{~K}$ with a Foner-type vibrating-sample magnetometer (50A PAR) and in the range $78-300 \mathrm{~K}$ with a sensitive Gouy balance. All magneticsusceptibility data were corrected for diamagnetism. Thermogravimetric results were obtained on a Paulik-Paulik-Erdey-type OD-102 derivatograph in the range 293-523 K.

Crystal data

Systematic absences were observed for $h k l$ when $h+$ $k+l=2 n+1$. Since the Laue symmetry is $4 / m$ the space group is $I 4, I 4 / m$ or $I \overline{4}$. A crystal $0.09 \times 0.09 \times$ 0.10 mm was selected for data collection. A Syntex $P 2{ }_{1}$ diffractometer with a graphite monochromator and $\mathrm{Cu} K \alpha$ radiation were used for lattice-parameter and intensity measurements. The crystal data are: $\left[\mathrm{Mn}_{12}{ }^{-}\right.$ $\left.\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{16}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{O}_{12}\right] .2 \mathrm{CH}_{3} \mathrm{COOH} .4 \mathrm{H}_{2} \mathrm{O}, \quad M_{r}=$ 2060.3, tetragonal, space group $I \overline{4}, a=17.319$ (9), $c=$ 12.388 (7) $\AA, Z=2, D_{m}=1.83, D_{c}=1.84 \mathrm{Mg} \mathrm{m}^{-3}$, $\mu(\mathrm{Cu} K \alpha, \lambda=1.54018 \AA)=17.89 \mathrm{~mm}^{-1}$.

The intensities were measured by the $2 \theta-\omega$ scan technique. After each group of 15 reflexions the intensity of a standard was measured and no significant change observed. The data were corrected for Lorentz and polarization effects only. Of 1428 accessible reflexions below $2 \theta \simeq 114.5^{\circ}, 1172$ with $I>$ $1 \cdot 96 \sigma(I)$ were used. The calculations (except MULTAN) were performed on the Nova mini-computer with programs supplied by Syntex. Neutral-atom scattering factors were from International Tables for X-ray Crystallography (1974); both real and imaginary components of the anomalous dispersion were included for Mn, O and C .

Structure determination and refinement

The structure was solved by direct methods. $220 E$ values > 1.40 were used in MULTAN of the XRAY system (1978) in all three space groups: $I 4, I \overline{4}$ and $I 4 / \mathrm{m}$. In each space group three E maps corresponding to the solution with the best figure of merit were computed. A satisfactory solution was obtained in $I \overline{4}$ for the third solution which proved to be the best when peaks 1, 2, 4 on the E map were assumed to be Mn atoms ($R=0.30$). A series of difference syntheses yielded the positions of the non- H atoms; R then dropped to 0.095 . The compound was identified as $\left[\mathrm{Mn}_{12}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{16}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{O}_{12}\right] .4 \mathrm{H}_{2} \mathrm{O}$. Full-matrix least-squares refinement of the parameters of the two enantiomers (with isotropic thermal parameters) gave $R=0.086$ for one form and 0.110 for the inverted structure. Further refinement with anisotropic thermal parameters for the first enantiomer only gave $R=$

Table 1. The final positional parameters and equivalent isotropic thermal parameters with e.s.d.'s in parentheses

Atoms marked with an asterisk were included with an occupancy factor of 0.5 .

	x	y	z	$\begin{gathered} B_{\mathrm{eq}} \\ \left(\AA^{2}\right) \end{gathered}$
$\mathrm{Mn}(1)$	0.4170 (2)	-0.0180 (2)	$0 \cdot 1732$ (2)	1.51
$\mathrm{Mn}(2)$	$0 \cdot 2597$ (2)	-0.0463 (2)	$0 \cdot 1730$ (2)	1.90
$\mathrm{Mn}(3)$	0.3587 (2)	-0.1955 (2)	0.2709 (2)	1.90
$\mathrm{O}(1)$	0.4312 (5)	-0.0152 (5)	0.3253 (7)	1.88
$\mathrm{O}(2)$	0.3518 (4)	-0.1044 (5)	$0 \cdot 1870$ (7)	1.79
$\mathrm{O}(3)$	0.3265 (4)	0.0388 (5)	0.1836 (7)	2.17
O(4)	0.4147 (5)	-0.0216 (5)	0.0190 (7)	$2 \cdot 19$
O(5)	0.2871 (5)	-0.0459 (5)	-0.0044 (7)	2.47
O(6)	$0 \cdot 2360$ (5)	-0.0522 (6)	0.3462 (8)	4.35
O (7)	$0 \cdot 3098$ (5)	-0.1453 (5)	0.4125 (7)	3.08
O(8)	$0 \cdot 1688$ (5)	0.0160 (5)	$0 \cdot 1513$ (7)	2.73
O(9)	0.3611 (5)	-0.2933 (5)	0.3533 (8)	$3 \cdot 15$
$\mathrm{O}(10)$	$0 \cdot 1932$ (5)	-0.1341 (5)	$0 \cdot 1455$ (8)	3.25
$\mathrm{O}(1)$	$0 \cdot 2522$ (5)	-0.2303 (5)	$0 \cdot 2284$ (8)	3.03
$\mathrm{O}(12)$	0.3939 (5)	-0.2636 (5)	$0 \cdot 1315$ (8)	$3 \cdot 34$
O(13)	0.3086 (7)	-0.2194 (7)	-0.0448 (8)	6.21
*O(14)	0.0752 (29)	0.0759 (28)	$0 \cdot 3753$ (42)	18.39
*O(15)	0.0622 (33)	-0.0901 (37)	0.3579 (53)	24.53
$\mathrm{C}(1)$	0.3549 (8)	-0.0367 (7)	-0.0397 (10)	2.07
C(2)	0.3707 (8)	-0.0450 (9)	-0.1581 (11)	4.07
C(3)	0.2701 (9)	-0.0865 (8)	0.4212 (12)	3.40
C(4)	0.2659 (19)	-0.0552 (11)	0.5347 (13)	15.06
C(5)	$0 \cdot 1578$ (7)	0.0888 (8)	$0 \cdot 1357$ (11)	2.55
C(6)	0.0799 (8)	$0 \cdot 1087$ (9)	0.0975 (14)	4.38
C(7)	$0 \cdot 1983$ (7)	-0.2031 (7)	$0 \cdot 1786$ (11)	2.07
C(8)	$0 \cdot 1311$ (8)	-0.2550 (8)	0.1488 (13)	4.12
${ }^{*} \mathrm{C}(9)$	0.0474 (20)	0.0090 (32)	0.3681 (31)	7.07
${ }^{*} \mathrm{C}(10)$	-0.0598 (21)	0.0412 (27)	0.3478 (31)	5.03
H(1)	0.437	-0.240	0.100	
H(2)	0.363	-0.250	0.075	
H(3)	0.335	-0.225	-0.124	
H(4)	0.263	-0.188	0.000	
H(21)	0.334	-0.034	-0.210	
H(22)	0.416	-0.093	-0.175	
H(23)	0.394	0.008	-0.184	
H(41)	0.227	-0.015	0.530	
H(42)	$0 \cdot 300$	-0.020	0.500	
H(43)	0.266	-0.090	0.588	
H(61)	0.050	0.150	0.129	
H(62)	0.066	0.127	0.020	
H(63)	0.033	0.070	$0 \cdot 110$	
H(81)	0.153	-0.309	0.106	
H(82)	0.088	-0.221	$0 \cdot 172$	
H(83)	0.114	-0.288	0.195	

0.069 and $R_{w}=0.082$. A difference synthesis at this stage revealed three relatively large peaks $\left(\sim 3 \mathrm{e} \AA^{-3}\right)$. From an examination of the distances between these peaks, the corresponding angles, and the peak electron densities, it was concluded that they corresponded to a disordered acetic acid molecule of solvation. From geometric and crystallographic principles it follows that the occupancy factors for the atoms from disordered acetic acid molecules could not be higher than 0.5 . Further difference syntheses located all H atoms (except those belonging to the acetic acid molecules).

Further refinement with isotropic temperature factors for atoms from the disordered acetic acid molecules and fixed parameters for H atoms ($B=4.0 \AA^{2}$) gave a final $R=0.045$ and $R_{w}=0.034$. A final difference

Table 2. Interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

Symmetry code: (i) $\frac{1}{2}-y,-\frac{1}{2}+x, \frac{1}{2}-z$; (ii) $\frac{1}{2}+y, \frac{1}{2}-x, \frac{1}{2}-z$;
(iii) $1-x,-y, z$.

$\mathrm{Mn}(1) \cdots \mathrm{Mn}\left(1^{1}\right)$	2.820 (3)	$\mathrm{Mn}(1) \cdots \mathrm{Mn}\left({ }^{\text {1III }}\right)$	2.943 (3)
$\mathrm{Mn}(1) \cdots \mathrm{Mn}(2)$	2.767 (3)	$\mathrm{Mn}(1) \cdots \mathrm{Mn}(3)$	3.455 (3)
$\mathrm{Mn}(1) \cdots \mathrm{Mn}\left(3^{\text {III }}\right.$)	3.447 (3)	$\mathrm{Mn}(2) \cdots \mathrm{Mn}(3)$	3.329 (3)
$\mathrm{Mn}(2) \cdots \mathrm{Mn}\left(3^{\text {III }}\right.$)	3.413 (3)		
$\mathrm{Mn}(1)-\mathrm{O}(1)$	1.901 (8)	$\mathrm{Mn}(1)-\mathrm{O}\left(1^{1}\right)$	1.916 (7)
$\mathrm{Mn}(1)-\mathrm{O}\left(1^{\text {II }}\right.$)	1.908 (8)	$\mathrm{Mn}(1)-\mathrm{O}(2)$	1.883 (7)
$\mathrm{Mn}(1)-\mathrm{O}(3)$	1.854 (7)	$\mathrm{Mn}(1)-\mathrm{O}(4)$	1.912 (8)
$\mathrm{Mn}(2)-\mathrm{O}(2)$	1.894 (7)	$\mathrm{Mn}(2)-\mathrm{O}(3)$	1.878 (7)
$\mathrm{Mn}(2)-\mathrm{O}(5)$	2.248 (8)	$\mathrm{Mn}(2)-\mathrm{O}$ (6)	$2 \cdot 187$ (10)
$\mathrm{Mn}(2)-\mathrm{O}(8)$	1.928 (8)	$\mathrm{Mn}(2)-\mathrm{O}(10)$	1.939 (8)
$\mathrm{Mn}(3)-\mathrm{O}(2)$	1.892 (7)	$\mathrm{Mn}(3)-\mathrm{O}\left(3^{1}\right)$	1.902 (8)
$\mathrm{Mn}(3)-\mathrm{O}(7)$	2.132 (8)	$\mathrm{Mn}(3)-\mathrm{O}(9)$	1.978 (8)
$\mathrm{Mn}(3)-\mathrm{O}(11)$	2.011 (8)	$\mathrm{Mn}(3)-\mathrm{O}(12)$	$2 \cdot 178$ (9)
$\mathrm{C}(1)-\mathrm{O}(4)$	1.292 (14)	$\mathrm{C}(1)-\mathrm{O}(5)$	1.264 (15)
$\mathrm{C}(3)-\mathrm{O}(6)$	1.251 (17)	C(3)-O(7)	1.234 (17)
$\mathrm{C}(5)-\mathrm{O}(8)$	1.289 (15)	$\mathrm{C}(5)-\mathrm{O} 9^{\text {III }}$)	1.221 (15)
$\mathrm{C}(7)-\mathrm{O}(10)$	1.266 (14)	$\mathrm{C}(7)-\mathrm{O}(11)$	1.215 (14)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.498 (18)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.508 (22)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.471 (18)	$\mathrm{C}(7)-\mathrm{C}(8)$	1.516 (18)
$\mathrm{O}(12) \cdots \mathrm{O}\left(6^{\text {i }}\right.$)	2.756 (12)	$\mathrm{O}(12) \cdots \mathrm{O}(13)$	2.745 (13)
$\mathrm{O}(12)-\mathrm{H}(1)$	0.93	$\mathrm{O}(12)-\mathrm{H}(2)$	0.92
$\mathrm{H}(1) \cdots \mathrm{O}\left(6^{1}\right)$	$2 \cdot 15$	$\mathrm{H}(2) \cdots \mathrm{O}(13)$	1.83
$\mathrm{IC}(9)-\mathrm{O}(14)$	1.26 (8)]	IC(9)--O(15)	1.74 (9)]
[C(9)--C(10)	1.95 (6)]		

synthesis was featureless. The final atomic coordinates are listed in Table 1.*

Description of the structure and discussion

Fig. 1 shows the arrangement of the molecules in projection on the (001) plane with the numbering scheme. Interatomic distances and angles are given in Table 2.

The crystals are composed of discrete dodecanuclear $\left[\mathrm{Mn}_{12}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{16}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{O}_{12}\right]$ molecules, waters of hydration and disordered acetic acid molecules. The overall structure of the molecule is quite unusual, resembling a snow-flake. The Mn atoms are linked by triply bridging oxo O atoms and by carboxylate bridges from acetate anions. Since the centers of the molecules occupy the points of $\overline{4}$ symmetry the molecules as a whole have $\overline{4}\left(S_{4}\right)$ point symmetry, and therefore there are only three crystallographically independent Mn atoms in one molecule. All Mn atoms have a distorted octahedral coordination. Because the experimentally found oxidation state was 3.34 per Mn atom, eight Mn atoms must be in oxidation state +3 and four in oxidation state +4 . It is known that the trivalent octahedral Mn complexes

[^0]Table 2 (cont.)

$\mathrm{O}(1)-\mathrm{Mn}(1)-\mathrm{O}\left(1^{1}\right)$	$83.5(4)$
$\mathrm{O}(1)-\mathrm{Mn}(1)-\mathrm{O}(2)$	$90.4(4)$
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{Mn}(1)-\mathrm{O}(2)$	$99.5(4)$
$\mathrm{O}\left(1^{11}\right)-\mathrm{Mn}(1)-\mathrm{O}(2)$	$174.1(4)$
$\mathrm{O}(2)-\mathrm{Mn}(1)-\mathrm{O}(3)$	$84.7(4)$
$\mathrm{O}(2)-\mathrm{Mn}(2)-\mathrm{O}(3)$	$83.8(4)$
$\mathrm{O}(2)-\mathrm{Mn}(2)-\mathrm{O}(8)$	$176.5(4)$
$\mathrm{O}(3)-\mathrm{Mn}(2)-\mathrm{O}(6)$	$94.8(4)$
$\mathrm{O}(5)-\mathrm{Mn}(2)-\mathrm{O}(6)$	$177.2(4)$
$\mathrm{O}(6)-\mathrm{Mn}(2)-\mathrm{O}(8)$	$90.6(4)$
$\mathrm{O}(2)-\mathrm{Mn}(3)-\mathrm{O}\left(3^{1}\right)$	$93.2(4)$
$\mathrm{O}(2)-\mathrm{Mn}(3)-\mathrm{O}(11)$	$92.8(4)$
$\mathrm{O}\left(3^{1}\right)-\mathrm{Mn}(3)-\mathrm{O}(9)$	$89.9(4)$
$\mathrm{O}(7)-\mathrm{Mn}(3)-\mathrm{O}(9)$	$86.1(4)$
$\mathrm{O}(9)-\mathrm{Mn}(3)-\mathrm{O}(11)$	$84.1(4)$
$\mathrm{Mn}(1)-\mathrm{O}(1)-\mathrm{Mn}\left(1^{\prime}\right)$	$95.5(4)$
$\mathrm{Mn}(1)-\mathrm{O}(2)-\mathrm{Mn}(2)$	$94.2(4)$
$\mathrm{Mn}(1)-\mathrm{O}(3)-\mathrm{Mn}(2)$	$95.7(4)$
$\mathrm{Mn}(1)-\mathrm{O}(4)-\mathrm{C}(1)$	$125.8(8)$
$\mathrm{Mn}(2)-\mathrm{O}(8)-\mathrm{C}(5)$	$133.5(8)$
$\mathrm{Mn}(3)-\mathrm{O}(9)-\mathrm{C}\left(5^{\prime}\right)$	$131.8(9)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(4)$	$115.1(11)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{O}(6)$	$119.9(15)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{O}(8)$	$114.4(12)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{O}(10)$	$115.3(11)$
$\mathrm{O}(14)-\mathrm{C}(9)-\mathrm{O}(15)$	$149(5)]$
$\mathrm{O}(12)-\mathrm{H}(1) \cdots \mathrm{O}\left(6^{\prime}\right)$	121.7

$\mathrm{Mn}(1)-\mathrm{O}\left(1^{11}\right)$	
$\mathrm{O}(1)-\mathrm{Mn}(1)-\mathrm{O}(3)$	91.6 (4)
$\mathrm{O}\left(1^{1}\right)-\mathrm{Mn}(1)-\mathrm{O}(3)$	173.5 (4)
$\mathrm{O}\left(1^{\text {lii) }}\right.$ - $\mathrm{Mn}(1)-\mathrm{O}(3)$	95.9 (4)
$\mathrm{O}(2)-\mathrm{Mn}(1)-\mathrm{O}(4)$	93.0 (4)
(2) $-\mathrm{Mn}(2)-\mathrm{O}(5)$	
(2) $-\mathrm{Mn}(2)-\mathrm{O}(10)$	95.7 (4)
(3) $-\mathrm{Mn}(2)-\mathrm{O}$ (8)	94.2 (4)
(5)-Mn(2)-O(8)	91.9 (4)
$\mathrm{O}(6)-\mathrm{Mn}(2)-\mathrm{O}(10)$	91.4 (4)
$\mathrm{O}(2)-\mathrm{Mn}(3)-\mathrm{O}(7)$	95.0 (4)
$\mathrm{O}(2)-\mathrm{Mn}(3)-\mathrm{O}(12)$	91.9 (4)
$\mathrm{O}\left(3^{1}\right)-\mathrm{Mn}(3)-\mathrm{O}(11)$	173.8 (4)
(7) $-\mathrm{Mn}(3)-\mathrm{O}(11)$	88.5 (4)
(9) $-\mathrm{Mn}(3)-\mathrm{O}(12)$	86.6 (4)
$\mathrm{Mn}(1)-\mathrm{O}(1)-\mathrm{Mn}\left(1^{\text {III }}\right.$)	95.3 (4)
$\mathrm{Mn}(1)-\mathrm{O}(2)-\mathrm{Mn}(3)$	132.5 (4)
$\mathrm{Mn}(1)-\mathrm{O}(3)-\mathrm{Mn}\left(3^{\text {II }}\right.$)	133.2 (5)
$\mathrm{Mn}(2)-\mathrm{O}(5)-\mathrm{C}(1)$	122.4 (8)
$\mathrm{Mn}(2)-\mathrm{O}(10)-\mathrm{C}(7)$	129.9 (8)
$\mathrm{Mn}(3)-\mathrm{O}(11)-\mathrm{C}(7)$	136.2 (9)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(5)$	119.8 (11)
(4)-C(3)-O(7)	113.9 (15)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{O}$ (911)	120.4 (12)
(8)--C(7)-O(11)	118.9 (12)
[C(10)-C(9)-O(14)	96 (4)]
$\mathrm{O}(12)-\mathrm{H}(2) \cdots \mathrm{O}(13)$	$174 \cdot 3$

$\mathrm{O}\left(1^{1}\right)-\mathrm{Mn}(1)-\mathrm{O}\left(1^{\text {li }}\right.$)	79.3 (4)
$\mathrm{O}(1)-\mathrm{Mn}(\mathrm{I})-\mathrm{O}(4)$	173.7 (4)
$\mathrm{O}\left(1^{1}\right)-\mathrm{Mn}(1)-\mathrm{O}(4)$	90.7 (4)
$\mathrm{O}\left(1^{11}\right)-\mathrm{Mn}(1)-\mathrm{O}(4)$	92.8 (4)
$\mathrm{O}(3)-\mathrm{Mn}(1)-\mathrm{O}(4)$	94.0 (4)
$\mathrm{O}(2)-\mathrm{Mn}(2)-\mathrm{O}(6)$	92.5 (4)
$\mathrm{O}(3)-\mathrm{Mn}(2)-\mathrm{O}(5)$	86.3 (4)
$\mathrm{O}(3)-\mathrm{Mn}(2)-\mathrm{O}(10)$	173.8 (4)
$\mathrm{O}(5)-\mathrm{Mn}(2)-\mathrm{O}(10)$	87.5 (4)
$\mathrm{O}(8)-\mathrm{Mn}(2)-\mathrm{O}(10)$	85.9 (4)
$\mathrm{O}(2)-\mathrm{Mn}(3)-\mathrm{O}(9)$	176.7 (4)
$\mathrm{O}\left(3^{1}\right)-\mathrm{Mn}(3)-\mathrm{O}(7)$	92.6 (4)
$\mathrm{O}\left(3^{1}\right)-\mathrm{Mn}(3)-\mathrm{O}(12)$	94.7 (4)
$\mathrm{O}(7)-\mathrm{Mn}(3)-\mathrm{O}(12)$	169.7 (4)
$\mathrm{O}(11)-\mathrm{Mn}(3)-\mathrm{O}(12)$	83.5 (4)
$\mathrm{Mn}\left(1^{1}\right)-\mathrm{O}(1)-\mathrm{Mn}\left(1^{11}\right)$	$100 \cdot 6$ (4)
$\mathrm{Mn}(2)-\mathrm{O}(2)-\mathrm{Mn}(3)$	123.1 (4)
$\mathrm{Mn}(2)-\mathrm{O}(3)-\mathrm{Mn}\left(3^{\text {II }}\right.$)	129.1 (5)
$\mathrm{Mn}(2)-\mathrm{O}(6)-\mathrm{C}(3)$	131.5 (9)
$\mathrm{Mn}(3)-\mathrm{O}(7)-\mathrm{C}(3)$	129.1 (9)
$\mathrm{O}(4)-\mathrm{C}(1)-\mathrm{O}(5)$	125.1 (11)
$\mathrm{O}(6)-\mathrm{C}(3)-\mathrm{O}(7)$	126.2 (14)
$\mathrm{O}(8)-\mathrm{C}(5)-\mathrm{O}\left(9^{\text {II }}\right.$)	125.2 (12)
$\mathrm{O}(10)-\mathrm{C}(7)-\mathrm{O}(11)$	125.8 (12)
[$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{O}(15)$	114 (4)]

Fig. 1. The crystal structure of $\left[\mathrm{Mn}_{12}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{16}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right.$ $\mathrm{O}_{12} \mathrm{I} .2 \mathrm{CH}_{3} \mathrm{COOH} .4 \mathrm{H}_{2} \mathrm{O}$: projection on the (001) plane.
should be subject to strong Jahn-Teller distortions. Since the $\mathrm{Mn}-\mathrm{O}$ distances vary between 1.85 (1)1.92 (1), 1.88 (1)-2.25 (1), and 1.89 (1)-2. 18 (1) \AA for $\mathrm{Mn}(1), \mathrm{Mn}(2)$, and $\mathrm{Mn}(3)$ respectively, they support the hypothesis that $\mathrm{Mn}(1)$ is the Mn^{4+} ion and $\mathrm{Mn}(2)$ and $\mathrm{Mn}(3)$ are the Mn^{3+} ions.
Each $\mathrm{Mn}(1)$ atom is bridged with three symmetryequivalent $\mathrm{Mn}(1)$ atoms through $\mathrm{O}(1)$ atoms and each $\mathrm{O}(1)$ atom is linked with three $\mathrm{Mn}(1)$ atoms. In this way four $\mathrm{Mn}(1)$ and four $\mathrm{O}(1)$ atoms form an almost ideal cubane structure.

The $\mathrm{Mn}(1)$ atoms are linked with $\mathrm{Mn}(2)$ and $\mathrm{Mn}(3)$ atoms as well as the $\mathrm{Mn}(2)$ atoms with $\mathrm{Mn}(3)$ atoms by triply bridging oxo $O(2)$ and $O(3)$ atoms. In this way there are two crystallographically independent triangles formed of one $\mathrm{Mn}(1)$, one $\mathrm{Mn}(2)$ and one $\mathrm{Mn}(3)$ atom. The bridging μ_{3}-oxo $\mathrm{O}(2)$ and $\mathrm{O}(3)$ atoms are, however, displaced by 0.34 (1) and 0.15 (1) \AA, respectively, from the planes formed by the three-coordinated metal atoms. Furthermore, the $\mathrm{Mn}(1)$ atoms are linked with $\mathrm{Mn}(2)$ atoms by one carboxylate bridge, and the $\mathrm{Mn}(2)$ atoms are linked with the $\mathrm{Mn}(3)$ atoms through three independent carboxylate bridges. One water molecule completes the octahedral environment of the $\mathrm{Mn}(3)$ atom.

The $\mathrm{Mn}-\mathrm{O}$ (oxo) distances are in the range 1.85 (1)1.92 (1) \AA and are similar to metal-O(oxo) distances in other μ_{3}-oxo trinuclear $\mathrm{Mn}, \mathrm{Rh}, \mathrm{Cr}, \mathrm{Fe}$, and V complexes. The Jahn-Teller effect which occurs in the Mn^{3+} ions differentiates the $\mathrm{Mn}-\mathrm{O}$ distances. For $\mathrm{Mn}(2)$ there are two long [2.25 (1) and $2 \cdot 19$ (1) \AA] and four short $[1.88$ (1)-1.94 (1) \AA] $\mathrm{Mn}-\mathrm{O}$ distances and the Jahn-Teller distortion may be classified as tetragonal elongation. The most probable description of
$\mathrm{Mn}(3)$ is that there are three pairs of different $\mathrm{Mn}-\mathrm{O}$ cis distances: two long [2.18 (1) and $2 \cdot 13$ (1) \AA], two intermediate $[1.98$ (1) and 2.01 (1) \AA] and two short [1.89 (1) and 1.90 (1) \AA] and thus the Jahn-Teller distortion may be classified as orthorhombic. Both kinds of distortion were earlier observed in other $\mathrm{Mn}^{\mathrm{III}}$ carboxylate complexes (Lis \& JeziowskaTrzebiatowska, 1977; Lis, Matuszewski \& JeżowskaTrzebiatowska, 1977).

The Mn -water distances of 2.18 (1) \AA are shorter than those in the monoclinic and orthorhombic modifications of $\mathrm{K}\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{mal})_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ of $2 \cdot 29$ (2) A (Lis, Matuszewski \& Jezowska-Trzebiatowska, 1977; Lis \& Matuszewski, 1980) and a little shorter than those in $\mathrm{CsMnF}_{4} .2 \mathrm{H}_{2} \mathrm{O}$ of 2.21 (1) \AA (Bukovec \& Kaučič, 1977). The H atoms from coordinated [$\mathrm{O}(12)$] water molecules form one intramolecular [with $\mathrm{O}(6)$] hydrogen bond and one intermolecular [with $\mathrm{O}(13)$] hydrogen bond. The parameters of these hydrogen bonds are summarized in Table 2. The H atoms from $\mathrm{O}(13)$ water molecules are not involved in hydrogen bonds.

The compound contains two types of acetate groups with different structural functions: bridging acetate ligands and the acetate group from the acetic acid molecules of solvation. The bridging acetate groups are almost planar. All distances and angles are similar to those found in other acetate complexes. The acetic acid molecules of solvation are located between the adjacent complex molecules. There is half a molecule of acetic acid in the crystallographic asymmetric unit. The molecules are situated around twofold axes and are statistically distributed between symmetry-equivalent positions. The positions of the $\mathrm{O}(15)$ and $\mathrm{C}(10)$ atoms from symmetry-equivalent acetic acid molecules are similar and therefore the coordinates and the bond lengths and angles are probably subject to more uncertainty than is indicated by the e.s.d.'s (Tables 1 and 2). The shortest interatomic distances $\mathrm{O}(14) \cdots$ $\mathrm{O}(12)$ of $2.84(5)$ and $\mathrm{O}(15) \cdots \mathrm{O}(6)$ of $3.08(6) \AA$ suggest that the hydrogen bonds are not strong.

The $\mathrm{Mn} \cdots \mathrm{Mn}$ distances are summarized in Table 2. The $\mathrm{Mn}(1) \cdots \mathrm{Mn}(3)$ and $\mathrm{Mn}(2) \cdots \mathrm{Mn}(3)$ distances are in the range 3.33 (1)-3.45 (1) \AA and are comparable with the metal-metal distances found in μ_{3}-oxo trinuclear complexes of $\mathrm{Fe}, \mathrm{Cr}, \mathrm{Mn}$ and others (Głowiak, Kubiak, Szymańska-Buzar \& JeżowskaTrzebiatowska, 1977). The values of these distances are rather too large to allow a direct metal-metal magnetic interaction. The $\mathrm{Mn}(1) \cdots \mathrm{Mn}(2)$ distance of 2.767 (3) \AA is relatively short and comparable with that of $2.716 \AA$ found in $\left[\mathrm{Mn}_{2}\left(2,2^{\prime} \text {-bipyridine }\right)_{4} \mathrm{O}_{2}\right](\mathrm{Cl}-$ $\left.\mathrm{O}_{4}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (Plaksin et al., 1972). In both complexes the structural unit $\mathrm{Mn}^{\mathrm{IV}}-\mathrm{O}-\mathrm{Mn}^{\text {III }}$ may be distinguished although the $\mathrm{Mn}-\mathrm{O}$ distances are longer in the compound under investigation. Plaksin et al. (1972)

Fig. 2. Magnetic moment (continuous curve) and inverse of the magnetic susceptibility (broken curve) (both per one Mn atom) for $\left[\mathrm{Mn}_{12}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{16}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{O}_{12}\right] .2 \mathrm{CH}_{3} \mathrm{COOH} .4 \mathrm{H}_{2} \mathrm{O} .[1 \mathrm{BM} \equiv$ $9.27 \times 10^{-24} \mathrm{~J} \mathrm{~T}^{-1}$.]
and Cooper (1976) determined the temperature dependence of the magnetic susceptibility of $\left[\mathrm{Mn}_{2}{ }^{-}\right.$ ($2,2^{\prime}$-bipyridine $\left.)_{4} \mathrm{O}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and concluded that Mn^{3+} and Mn^{4+} are high spin and antiferromagnetically coupled.
The $\mathrm{Mn}(1) \cdots \mathrm{Mn}(1)$ symmetry-equivalent distances are 2.820 (3) (two) and 2.943 (3) \AA. If exchange between all twelve $\mathrm{Mn}(1), \mathrm{Mn}(2)$ and $\mathrm{Mn}(3)$ high-spin atoms is assumed to be via O atoms, such a complicated dodecameric unit should have interesting magnetic properties. The magnetic measurements are given in Fig. 2. The magnetic moment increases from $30.9 \times 10^{-24} \mathrm{~J} \mathrm{~T}^{-1}$ at 3.3 K to a maximum of $56.5 \times$ $10^{-24} \mathrm{~J} \mathrm{~T}^{-1}$ in the range of $17-31 \mathrm{~K}$ and then decreases to $33.4 \times 10^{-24} \mathrm{~J} \mathrm{~T}^{-1}$ at 280 K per Mn atom.

Since slow decomposition was sometimes oberved at room temperature, to obtain more information about the stability of the compound thermogravimetric
measurements were made. It was found that decomposition started at 308 K . Above 308 K , up to 463 K , it follows the endothermic splitting off of water and acetic acid molecules of solvation. Next, at 468 K it follows the rapid exothermic decomposition of a complex.

The author thanks Mr Trúóng Xuân Måo (Vietnam) and Mr Edward Haraszkiewicz who participated in the early stage of this research for their MSc degrees.

References

Baikie, A. R. E., Hursthouse, M. B., New, D. B. \& Thornton, P. (1978). J. Chem. Soc. Chem. Commun. pp. 62-63.
Bukovec, P. \& Kaučič, V. (1977). J. Chem. Soc. Dalton Trans. pp. 945-947.
Cooper, S. R. (1976). PhD thesis, Univ. of California, Berkeley, California, USA.
Glowiak, t., Kubiak, M., Szymańska-Buzar, T. \& Jeżowska-Trzebiatowska, B. (1977). Acta Cryst. B33, 3106-3109.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Lis, T. (1977). Acta Cryst. B33, 2964-2966.
Lis, T. \& Jeżowska-Trzebiatowska, B. (1977). Acta Cryst. B33, 2112-2116.
Lis, T. \& Matuszewski, J. (1980). Pol. J. Chem. 54, 163-169.
Lis, T., Matuszewski, J. \& Jeżowska-Trzebiatowska, B. (1977). Acta Cryst. B33, 1943-1946.

Plaksin, P. M., Stoufer, R. C., Mathew, M. \& Palenik, G. J. (1972). J. Am. Chem. Soc. 94, 2121-2122.

Weinland, R. F. \& Fischer, G. (1921). Z. Anorg. Allg. Chem. 120, 161-180.
XRAY system (1978). Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland.

Acta Cryst. (1980). B36, 2046-2050

Tetrameric Methylzinc Methoxide

By H. M. M. Shearer \dagger And C. B. Spencer*
The Chemistry Department, The University, Durham, England

(Received 5 March 1980; accepted 16 April 1980)

Abstract

Methylzinc methoxide is orthorhombic with $a=$ 7.481 (15), $b=7.673$ (15), $c=29.42$ (5) \AA, space

^[\dagger Deceased. * Present address: ICI Ltd, PO Box 54, Wilton Works, Middlesbrough, Cleveland TS6 8JB, England.]

0567-7408/80/092046-05\$01.00
group $P 2_{1} 2_{1} 2_{1}, Z=4$ units of $\left(\mathrm{CH}_{3} \mathrm{ZnOCH}_{3}\right)_{4}$. Final $R=0.087$ for 1287 observed reflections. Methylzinc methoxide is tetrameric in the crystal, as was found in solution in benzene. The Zn and O atoms occupy the corners of two regular interpenetrating tetrahedra of different sizes, so that these atoms are four-coordinate and are situated on alternate corners of a distorted © 1980 International Union of Crystallography

[^0]: * Lists of structure factors and thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 35276 (27 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH 1 2HU, England.

